Astaxanthin and Diabetes Research Links as of Jan 2022



  1. Samantha Hurrle, Walter H. Hsu The etiology of oxidative stress in insulin resistance 2017 Biomedical Journal Volume 40, Issue 5, October 2017, Pages 257-262
  2. Antonio Ceriello and Enrico Motz Is Oxidative Stress the Pathogenic Mechanism Underlying Insulin Resistance, Diabetes, and Cardiovascular Disease? The Common Soil Hypothesis Revisited Arteriosclerosis, Thrombosis, and Vascular BiologyVolume 24, Issue 5, 1 May 2004; Pages 816-823
  3. Zhang, X.; Hou, Y.; Li, J.; Wang, J. The Role of Astaxanthin on Chronic Diseases. Crystals 2021, 11, 505. cryst11050505 Astaxanthin as an antioxidant is a potential drug for the treatment of diabetes and has been reported in many studies
  4. Mashhadi, N.S.; Zakerkish, M.; Mohammadiasl, J.; Zarei, M.; Mohammadshahi, M.; Haghighizadeh, M.H. Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr. 2018, 27, 341–346. 85.
  5. Feng,W.;Wang, Y.; Guo, N.; Huang, P.; Mi, Y. Effects of Astaxanthin on Inflammation and Insulin Resistance in a Mouse Model of Gestational Diabetes Mellitus. Dose-Response 2020, 18, 1559325820926765.
  6. Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018, 136, 1–20.
  7. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 10.
  8. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2019. Diabetes Care 2019, 42, S13–S28.
  9. Ryden, L.; Standl, E.; Bartnik, M.; Van den Berghe, G.; Betteridge, J.; De Boer, M.J.; Cosentino, F.; Jönsson, B.; Laakso, M.; Malmberg, K.; et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: Executive summary-The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2007, 28, 88–136.
  10. Ford, E.S.; Zhao, G.X.; Li, C.Y. Pre-diabetes and the risk for cardiovascular disease A systematic review of the evidence. J. Am. Coll. Cardiol. 2010, 55, 1310–1317.
  11. Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet 2014, 383, 1068–1083.
  12. Yang, W.; Lu, J.; Weng, J.; Jia, W.; Ji, L.; Xiao, J.; Shan, Z.; Liu, J.; Tian, H.; Ji, Q.; et al. Prevalence of diabetes among men and women in China. N. Engl. J. Med. 2010, 362, 1090–1101.
  13. Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all-cause mortality and cardiovascular disease: Updated meta-analysis. BMJ Br. Med. J. 2020, 370, 29.
  14. Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.C.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.; Thorand, B.; et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 2012, 8, 11.
  15. Ghasemi-Dehnoo, M.; Amini-Khoei, H.; Lorigooini, Z.; Rafieian-Kopaei, M. Oxidative stress and antioxidants in diabetes mellitus. Asian Pac. J. Trop. Med. 2020, 13, 431–438.
  16. Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462.
  17. Evans, J.; Goldfine, I.; Maddux, B.; Grodsky, G.M. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr. Rev. 2002, 23, 599–622.
  18. Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070.
  19. Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947.
  20. Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830.
  21. Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435.
  22. Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107.
  23. Kim, B.; Farruggia, C.; Ku, C.S.; Pham, T.X.; Yang, Y.; Bae, M.; Wegner, C.J.; Farrell, N.J.; Harness, E.; Park, Y.K.; et al. Astaxanthin inhibits inflammation and fibrosis in the liver and adipose tissue of mouse models of diet-induced obesity and nonalcoholic steatohepatitis. J. Nutr. Biochem. 2017, 43, 27–35.
  24. Bhuvaneswari, S.; Yogalakshmi, B.; Sreeja, S.; Anuradha, C.V. Astaxanthin reduces hepatic endoplasmic reticulum stress and nuclear factor-kappa B-mediated inflammation in high fructose and high fat diet-fed mice. Cell Stress 2014, 19, 183–191.
  25. Britton, G. Carotenoid research: History and new perspectives for chemistry in biological systems. BBA Mol. Cell Biol. Lipids 2020, 1865, 158699.
  26. Yuan, J.P.; Chen, F. Isomerization of trans-astaxanthin to cis-Isomers in organic solvents. J. Agric. Food Chem. 1999, 47, 3656–3660.
  27. Gulzar, S.; Benjakul, S. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Food Chem. 2020, 310, 125916.
  28. Chen, G.; Wang, B.; Han, D.; Sommerfeld, M.; Lu, Y.; Chen, F.; Hu, Q. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). Plant J. 2015, 81, 95–107.
  29. Grung, M.; D’Souza, F.M.L.; Borowitzka, M.; Liaaen-Jensen, S. Algal carotenoids 51. secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S, 30S)-astaxanthin esters. J. Appl. Phycol. 1992, 4, 165–171.
  30. Lorenz, R.T.; Cysewski, G.R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000, 18, 160–167.
  31. Zhang, S.; Sun, X.; Liu, D. Preparation of (3R, 30 R)-astaxanthin monoester and (3R, 30 R)-astaxanthin from Antarctic krill (Euphausia superba Dana). Eur. Food Res. Technol. 2015, 240, 295–299.
  32. Capelli, B.; Bagchi, D.; Cysewski, G.R. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 2013, 12, 145–152.
  33. Camera, E.; Mastrofrancesco, A.; Fabbri, C.; Daubrawa, F.; Picardo, M.; Sies, H.; Stahl, W. Astaxanthin, canthaxanthin and -carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp. Dermatol. 2009, 18, 222–231.
  34. Iwamoto, T.; Hosoda, K.; Hirano, R.; Kurata, H.; Matsumoto, A.; Miki, W.; Kamiyama, M.; Itakura, H.; Yamamoto, S.; Kondo, K. Inhibition of low-density lipoprotein oxidation by astaxanthin. J. Atheroscier Thromb 2000, 7, 216–222.
  35. Shen, H.; Kuo, C.C.; Chou, J.; Delvolve, A.; Jackson, S.N.; Post, J.;Woods, A.S.; Hoffer, B.J.;Wang, Y.; Harvey, B.K. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J. 2009, 23, 1958–1968.
  36. Kim, J.H.; Nam, S.W.; Kim, B.W.; Kim,W.J.; Choi, Y.H. Astaxanthin improves the proliferative capacity as well as the osteogenic and adipogenic differentiation potential in neural stem cells. Food Chem. Toxicol. 2010, 48, 1741–1745.
  37. Park, J.S.; Chyun, J.H.; Kim, Y.K.; Line, L.L.; Chew, B.P. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr. Metab. 2010, 7, 18.
  38. Magenta, A.; Cencioni, C.; Fasanaro, P.; Zaccagnini, G.; Greco, S.; Sarra-Ferraris, G.; Antonini, A.; Martelli, F.; Capogrossi, M.C. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011, 18, 1628–1639.
  39. Donato, A.J.; Morgan, R.G.; Walker, A.E.; Lesniewski, L.A. Cellular and molecular biology of aging endothelial cells. J. Mol. Cell Cardiol. 2015, 89, 122–135. [CrossRef]
  40. Satoh, K.; Nigro, P.; Berk, B.C. Oxidative stress and vascular smooth muscle cell growth: A mechanistic linkage by cyclophilin A. Antioxid. Redox Signal. 2010, 12, 675–682.
  41. Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. J. Med. Chem. 2015, 97, 55–74.
  42. Cui, G.; Li, L.; Xu, W.; Wang, M.; Jiao, D.; Yao, B.; Xu, K.; Chen, Y.; Yang, S.; Long, M. Astaxanthin Protects Ochratoxin A-Induced Oxidative Stress and Apoptosis in the Heart via the Nrf2 Pathway. Oxid. Med. Cell. Longev. 2020, 2020, 7639109.
  43. Xue, Y.; Sun, C.; Hao, Q.; Cheng, J. Astaxanthin ameliorates cardiomyocyte apoptosis after coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392, 341–348
  44. Kishimoto, Y.; Tani, M.; Uto-Kondo, H.; Iizuka, M.; Saita, E.; Sone, H.; Kurata, H.; Kondo, K. Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages. Eur. J. Nutr. 2010, 49, 119–126.
  45. Lin, Q.; Wang, H.; Lin, J.; Chen, Z.; Chang-Sheng, X.; Huang, D.; Zhang, L.; Liang, J. The protective effect and related mechanisms of astaxanthin on endothelial function in diabetic rats. Chin. J. Hypertens 2015, 23, 530–536.
  46. Nishigaki, I.; Rajendran, P.; Venugopal, R.; Ekambaram, G.; Sakthisekaran, D.; Nishigaki, Y. Cytoprotective role of astaxanthin against glycated protein/iron chelate-induced toxicity in human umbilical vein endothelial cells. Phytother. Res. 2010, 24, 54–59.
  47. Chan, K.C.; Chen, S.C.; Chen, P.C. Astaxanthin attenuated thrombotic risk factors in type 2 diabetic patients. J. Funct. Food 2019, 53, 22–27.
  48. Uchiyama, K.; Naito, Y.; Hasegawa, G.; Nakamura, N.; Takahashi, J.; Yoshikawa, T. Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice. Redox Rep. 2002, 7, 290–293.
  49. Li, Y.-C.; He, Q.-H.; Liu, R.-X.; Zhang, B.; Yang, Z.-X.; Zhou, M. Effects of Haematococcus pluvialis astaxanthin on diabetes mice for decreasing blood glucose and its mechanisms. Sci. Technol. Food Ind. 2016, 37, 355–359.
  50. Chen, Y.; Tang, J.; Zhang, Y.; Du, J.; Wang, Y.; Yu, H.; He, Y. Astaxanthin alleviates gestational diabetes mellitus in mice through suppression of oxidative stress. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 2517–2527.
  51. Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Samarghandian, S. Nrf2 a molecular therapeutic target for Astaxanthin. Biomed. Pharmacother 2021, 137, 111374.
  52. Landon, R.; Gueguen, V.; Petite, H.; Letourneur, D.; Pavon-Djavid, G.; Anagnostou, F. Impact of astaxanthin on diabetes pathogenesis and chronic complications. Mar. Drugs 2020, 18, 357.
  53. Ishiki, M.; Nishida, Y.; Ishibashi, H.;Wada, T.; Fujisaka, S.; Takikawa, A.; Urakaze, M.; Sasaoka, T.; Usui, I.; Tobe, K. Impact of divergent effects of astaxanthin on insulin signaling in L6 cells. Endocrinology 2013, 154, 2600–2612.
  54. Zhuge, F.; Ni, Y.; Wan, C.; Liu, F.; Fu, Z. Anti-diabetic effects of astaxanthin on an STZ-induced diabetic model in rats. Endocr. J. 2020, 68, EJ20-0699.
  55. Haffner, S.M. The metabolic syndrome: Inflammation, diabetes mellitus, and cardiovascular disease. Am. J. Cardiol. 2006, 97, 3–11.
  56. Taborsky, M.; Linhart, A.; Rosolova, H.; Spinard, J. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Summary of the document prepared by the Czech Society of Cardiology. Cor. Vasa 2020, 62, 105–138.
  57. Selvin, E.; Marinopoulos, S.; Berkenblit, G.; Rami, T.; Brancati, F.L.; Powe, N.R.; Golden, S.H. Meta-analysis: Glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med. 2004, 141, 421–431.
  58. Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb Vasc. Biol. 2004, 24, 816–823.
  59. Heitzer, T.; Schlinzig, T.; Krohn, K.; Meinertz, T.; Münzel, T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001, 104, 2673–2678.
  60. Fiorello, M.L.; Treweeke, A.T.; Macfarlane, D.P.; Megson, I.L. The impact of glucose exposure on bioenergetics and function in a cultured endothelial cell model and the implications for cardiovascular health in diabetes. Sci. Rep. 2020, 10, 19547.
  61. Thiel, W.H.; Esposito, C.L.; Dickey, D.D.; Dassie, J.P.; Long, M.E.; Adam, J.; Streeter, J.; Schickling, B.; Takapoo, M.; Flenker, K.S.; et al. Vascular smooth muscle cell RNA aptamers for the treatment of cardiovascular disease. Mol. Ther. 2015, 23, 27.
  62. Fiorentino, T.V.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des. 2013, 19, 5695–5703.
  63. Riches, K.; Alshanwani, A.R.;Warburton, P.; O’Regan, D.J.; Ball, S.G.;Wood, I.C.; Turner, N.A.; Porter, K.E. Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from patients with type 2 diabetes drive persistent changes in phenotype and function. J. Mol. Cell Cardiol. 2014, 74, 240–250.
  64. Casella, S.; Bielli, A.; Mauriello, A.; Orlandi, A. Molecular pathways regulating macrovascular pathology and vascular smooth muscle cells phenotype in type 2 diabetes. Int. J. Mol. Sci. 2015, 16, 24353–24368.
  65. Villeneuve, L.M.; Reddy, M.A.; Lanting, L.L.;Wang, M.; Meng, L.; Natarajan, R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc. Natl. Acad. Sci. USA 2008, 105, 9047–9052.
  66. Ehses, J.A.; Perren, A.; Eppler, E.; Ribaux, P.; Pospisilik, J.A.; Maor-Cahn, R.; Gueripel, X.; Ellingsgaard, H.; Schneider, M.K.; Biollaz, G. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 2007, 56, 2356–2370.
  67. Ghlissi, Z.; Hakim, A.; Sila, A.; Mnif, H.; Zeghal, K.; Rebai, T.; Bougatef, A.; Sahnoun, Z. Evaluation of efficacy of natural astaxanthin and vitamin E in prevention of colistin-induced nephrotoxicity in the rat model. Environ. Toxicol. Pharmacol. 2014, 37, 960–966.
  68. Sila, A.; Ghlissi, Z.; Kamoun, Z.; Makni, M.; Nasri, M.; Bougatef, A.; Sahnoun, Z. Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. Eur. J. Nutr. 2015, 54, 301–307.
  69. Wu, L.; Sun, Z.; Chen, A.; Guo, X.; Wang, J. Effect of astaxanthin and exercise on antioxidant capacity of human body, blood lactic acid and blood uric acid metabolismEffet de l’astaxanthine et de l’exercice sur la capacité antioxydante, la lactatémie, et le métabolisme de l’acide urique. Sci. Sports 2019, 34, 348–352.
  70. Shokri, M.N.; Tahmasebi, M.; Mohammadi, A.J.; Zakerkish, M.; Mohammadshahi, M. The antioxidant and anti-inflammatory effects of astaxanthin supplementation on the expression of miR-146a and miR-126 in patients with type 2 diabetes mellitus: A randomised, double-blind, placebo-controlled clinical trial. Int. J. Clin. Pract. 2021, 75, e14022.
  71. Talbott, S.M.; Hantla, D.; Capelli, B.; Ding, L.; Li, Y.; Artaria, C. Effect of astaxanthin supplementation on psychophysiological heart-brain axis. Dyn. Healthy Subj. 2019, 9, 521–531.
  72. Choi, H.D.; Youn, Y.K.; Shin, W.G. Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects. Plant Food Hum. Nutr. 2011, 66, 363–369.
  73. Kim, J.H.; Chang, M.J.; Choi, H.D.; Youn, Y.K.; Kim, J.T.; Oh, J.M.; Shin, W.G. Protective effects of Haematococcus astaxanthin on oxidative stress in healthy smokers. J. Med. Food 2011, 14, 1469–1475.
  74. Buse, J.B.; Ginsberg, H.N.; Bakris, G.L.; Clark, N.G.; Costa, F.; Eckel, R.; Fonseca, V.; Gerstein, H.C.; Grundy, S.; Nesto, R.W.; et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus-A scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2007, 30, 162–172.
  75. Grundy, S.M. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J. Am. Coll Cardiol. 2012, 59, 635–643.
  76. Maritim, A.C.; Sanders, R.A.;Watkins, J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38.
  77. Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98.
  78. Nentwich, M.M.; Ulbig, M.W. Diabetic retinopathy-ocular complications of diabetes mellitus. World J. Diabetes 2015, 6, 489–499.
  79. Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74.
  80. Chao, C.T.; Yeh, H.Y.; Tsai, Y.T.; Yuan, T.H.; Liao, M.T.; Huang, J.W.; Chen, H.W. Astaxanthin counteracts vascular calcification in vitro through an early up-regulation of SOD2 based on a transcriptomic approach. J. Mol. Sci. 2020, 21, 8530.
  81. Yuan, L.; Qu, Y.; Li, Q.; An, T.; Chen, Z.; Chen, Y.; Deng, X.; Bai, D. Protective effect of astaxanthin against La2O3 nanoparticles induced neurotoxicity by activating PI3K/AKT/Nrf-2 signaling in mice. Food Chem. Toxicol. 2020, 144, 111582.
  82. Wu, W.; Wang, X.; Xiang, Q.; Meng, X.; Peng, Y.; Du, N.; Liu, Z.; Sun, Q.; Wanga, C.; Liu, X. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct. 2014, 5, 158–166.
  83. Yuan, L.; Liang, P.; Qu, Y.; An, T.; Wang, J.; Deng, X.; Bai, L.; Shen, P.; Bai, D. Protective effect of astaxanthin against SnS2 nanoflowers induced testes toxicity by suppressing RIPK1-RIPK3-MLKL signaling in mice. Food Chem. Toxicol. 2020, 145, 111736.
  84. Peng, Y.J.; Lu, J.W.; Liu, F.C.; Lee, C.H.; Lee, H.S.; Ho, Y.J.; Hsieh, T.H.; Wu, C.C.; Wang, C.C. Astaxanthin attenuates joint inflammation induced by monosodium urate crystals. FASEB J. 2020, 34, 11215–11226.
  85. Ozbeyli, D.; Gurler, E.B.; Buzcu, H.; Çilingir-Kaya, Ö.T.; Çam, M.E.; Yüksel, M. Astaxanthin alleviates oxidative damage in acute pancreatitis via direct antioxidant mechanisms. J. Gastroenterol. 2020, 31, 706–712.
  86. Xue, X.-L.; Han, X.-D.; Li, Y.; Chu, X.F.; Miao, W.M.; Zhang, J.L.; Fan, S.J. Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis. Stem Cell Res. Ther. 2017, 8, 7.
  87. Zhang, J.; Zhang, S.; Bi, J.; Gu, J.; Deng, Y.; Liu, C. Astaxanthin pretreatment attenuates acetaminophen-induced liver injury in Int. Immunopharmacol. 2017, 45, 26–33.
  88. Hoshi, H.; Monoe, F.; Ohsawa, I.; Ohta, S.; Miyamoto, T. Astaxanthin improves osteopenia caused by aldehyde-stress resulting from Aldh2 mutation due to impaired osteoblastogenesis. Biophys Res. Commun. 2020, 527, 270–275.
  89. Dong, L.Y.; Jin, J.; Lu, G.; Kang, X.L. Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Drugs 2013, 11, 960–974.
  90. Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States. HHS; 2014.
  91. World Health Organization Media Centre. Global report on diabetes. WHO Press; 2016.
  92. Aguilar M, Bhuket T, Torres S, Liu B, Wong R. Prevalence of the metabolic syndrome in the United States, 2003e2012. JAMA 2015;313:1973e4.
  93. Sies H. The concept of oxidative stress after 30 years. In: Gelpi R, Boveris A, Poderoso J, editors. Advances in biochemistry in health and disease. New York: Springer; 2016. p. 3e11.
  94. Schrieber M, Chandel N. ROS function in redox signaling and oxidative stress. Curr Biol 2014;24:453e62.
  95. Brand M. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 2016;100:14e31.
  96. Gao C, Zhu C, Zhao Y, Chen X, Ji C, Zhang C, et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol 2010;320:25e33.
  97. Marinho S, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014;2:535e62.
  98. Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Rad Biol Med 2011;51:1289e301.
  99. Hancer N, Qiu W, Cherella C, Li Y, Copps K, White M. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem 2014;29:12467e84.
  100. Cooper G. The cell: a molecular approach. 7th ed. Massachusetts: Sinauer; 2013.
  101. Blanco C, McGill-Vargas L, Gastaldelli A, Seidner S, McCurnin D, Leland M, et al. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons. Endocrinology 2015;156:813e23.
  102. Ma J, Nakagawa Y, Kojima I, Shibata H. Prolonged insulin stimulation down-regulates GLUT4 through oxidative stressmediated retromer inhibition by a protein kinase CK2- dependent mechanism in 3T3-L1 adipocytes. J Biol Chem 2013;298:133e42.
  103. Campa C, Ciraolo E, Ghigo A, Germena G, Hirsch E. Crossroads of PI3K and rac pathways. Small GTPases 2015;6:71e80.
  104. Henriksen E, Diamond-Stanic M, Marchionne E. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 2011;51:993e9.
  105. Tsai H, Wang W, Lin C, Pai P, Lai T, Tsai C, et al. NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK dependent activation of NF-kB in cardiomyocytes exposed to high glucose. J Cell Physiol 2012;227:1347e57.
  106. Al-Lahham R, Deford J, Papaconstantinou J. Mitochondrialgenerated ROS down regulates insulin signaling via activation of p38 MAPK stress response pathway. Mol Cell Endocrinol 2015;419:1e11.
  107. Boucher J, Kleinridders A, Kahn C. Insulin receptor signalling in normal and insulin resistant states. Cold Spring Harb Perspect Biol 2014;6:1e23. biomedical journal 40 (2017) 257 e262 261
  108. Jheng H, Tsai P, Guo S, Kuo L, Chang C, Su I, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 2012;32:309e19.
  109. Paio M, Kang K, Lee I, Kim H, Kim S, Choi J, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 2011;201:92e100.
  110. Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 2013;7:330e41.
  111. Cohen D, LeRoith D. Obesity, type 2 diabetes, and cancer: the insulin and IGF connection. Endocr Relat Cancer 2012;19:F27e45.
  112. Gaggini M, Morelli M, Buzzigoli E, DeFronzo R, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 2013;5:1544e60.
  113. Esser N, Legrand-Poels S, Piette J, Scheen A, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 2014;105:141e50.
  114. Boden G. Obesity, insulin resistance, and free fatty acids. Curr Opin Endocrinol Diabetes Obes 2011;18:139e43.
  115. Heinonen S, Muniandy M, Buzkova J, Mardinoglu A, Rodriguez A, Fruhbeck G, et al. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia 2017;60:169e81.
  116. Salzano S, Checconi P, Hanschmann E, Lillig C, Bowler L, Chan P, et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A 2014;111:12157e62.
  117. Lee M, Wu Y, Fried S. Adipose tissue heterogeneity: implications of depot differences in adipose tissue for obesity complications. Mol Asp Med 2013;34:1e11.
  118. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to ageassociated diseases. J Gerontol 2014;69:4e9.
  119. Barnes M, Carson M, Nair M. Non-traditional cytokines: how catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine 2015;72:210e9.
  120. Kizer J. A tangled threesome: adiponectin, insulin sensitivity, and adiposity. Diabetes 2013;62:1007e9.
  121. Shehzad A, Iqbal W, Shehzad O, Lee Y. Adiponectin: regulation of its production and its role in human disease. Hormones 2012;1:8e20.
  122. Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, et al. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophagederived IL-6-dependent pathway. Cell Metab 2011;13:401e12.
  123. Adams A, Kharitonenkov A. FGF21 drives a shift in adipocytokine tone to restore metabolic health. Aging 2013;15:386e7.
  124. Heredia F, Gomez-Martinez S, Marcos A. Obesity, inflammation, and the immune system. Proc Nutr Soc 2012;71:332e8.
  125. Matsuzawa Y. The metabolic syndrome and adipocytokines. Expert Rev Clin Immunol 2014;3:39e46.
  126. Shuster A, Patlas M, Pinthus J, Mourtzakis M. The clinical importance of visceral adiposity: a critical review for methods for visceral adipose tissue analysis. Br J Radiol 2012;85:1e10.
  127. Reczek C, Chandel N. ROS-dependent signal transduction. Curr Opin Cell Biol 2015;33:8e13.
  128. Halliwell B, Gutteridge J. Free radicals in biology and medicine. 5th ed. United Kingdom: Oxford; 2015.
  129. Reece J, Campbell N, Cain M, Urry L, Wasserman S, Minorsky P, et al. Campbell biology. 10th ed. Massachusetts: Cummings/Pearson; 2014.
  130. Pratt C, Cornely K. Essential biochemistry. 3rd ed. New Jersey: Wiley; 2014.
  131. Sleiman D, Al-Badri M, Azar S. Effect of Mediterranean diet in diabetes control and cardiovascular risk modification: a systematic review. Front Public Health 2015;3:69.
  132. Mason S, Della Gatta P, Snow R, Russell A, Wadley G. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with diabetes: findings of a randomized controlled study. Free Radic Biol Med 2016;93:227e38.
  133. Etsuo N. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 2014;66:3e12.
  134. Ramezani A, Djazayeri A, Koohdani F, Nematipour E, Javanbakht M, Keshavarz S, et al. Omega-3 fatty acids/ vitamin E behave synergistically on adiponectin receptor-1 and adiponectin receptor-2 gene expressions in peripheral blood mononuclear cell of coronary artery disease patients. Curr Top Nutraceutical Res 2015;13:23e32.
  135. Li D, Zhang Y, Liu Y, Sun R, Xia M. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J Nutr 2015;145:742e8.
  136. Suliburska J, Bogdanski P, Szulinska M, Stepien M, PupekMusialik D, Jablecka A. Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients. Biol Trace Elem Res 2012;149:315e22.
  137. Ihm S, Jang S, Kim O, Chang K, Oak M, Lee J, et al. Decaffeinated green tea extract improves hypertension and insulin resistance in a rat model of metabolic syndrome. Atherosclerosis 2012;224:377e83.
  138. Mann J, Lonn E, Yi Q, Gerstein H, Hoogwerf B, Pogue J, et al. Effects of vitamin E on cardiovascular outcomes in people with mild-to-moderate renal insufficiency: results of the HOPE study. Kidney Int 2004;65:1375e80.
  139. Lee D, Folsom A, Harnack L, Halliwell B, Jacobs D. Does supplemental vitamin C increase cardiovascular disease risk in women with diabetes? Am J Clin Nutr 2004;80:1194e200.
  140. Parrow N, Leshin J, Levine M. Parenteral ascorbate as a cancer therapeutic: a reassessment based on pharmacokinetics. Antioxid Redox Signal 2013;19:2141e56.
  141. Padayatty S, Sun H, Wang Y, Riordan H, Hewitt S, Katz A, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 2004;140:533e7.
  142. Borel P, Desmarchelier C, Nowicki M, Bott R, Tourniaire F. Can genetic variability in a-tocopherol bioavailability explain the heterogenous response to a-tocopherol supplements? Antioxid Redox Signal 2014;22:669e78.
  143. Deng C, Sun Z, Tong G, Yi W, Ma L, Zhao B, et al. a-Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3K/Akt/Nrf2 pathway. PLoS One 2013;8:e58371.
  144. Inman D, Lambert W, Calkins D, Horner P. a-Lipoic acid antioxidant treatment limits glaucoma retinal ganglion cell death and dysfunction. PLoS One 2013;8:e65389.
  145. Liu R. Health promoting components of fruits and vegetables in the diet. Adv Nutr 2013;14:3845e925. [57] Ismail H, Scapozza L, Ruegg U, Dorchies O. Diapocynin, a dimer of NADPH oxidase inhibitor apocynin, reduces ROS production and prevents force loss in eccentrically contracting dystrophic muscle. PLoS Med 2014;9:1e8.
  146. Amos A, McCarthy D, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997;14:S1–S85.
  147. Rosembloom AL, Joe JR, Young RS, Winter WE. Emerging epidemic of type 2 diabetes in youth. Diabetes Care. 1999;22:345–354.
  148. Kannel WB, McGee DL. Diabetes and cardiovascular diseases. The Framingham Study. JAMA. 1979;241:2035–2038.
  149. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–2497.
  150. Hu FB, Stampfer MJ, Haffner SM, Solomon CG, Willett WC, Manson JE. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care. 2002;25:1129–1134.
  151. Stern MP. Diabetes and cardiovascular disease. The “common soil” hypothesis. Diabetes. 1995;44:369–374.
  152. Kahan SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46:3–19.
  153. Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA. 1990;263:2893–2898.
  154. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, Savoye M, Rieger V, Taksali S, Barbetta G, Sherwin RS, Caprio S. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 2002;346:802–810.
  155. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288: 2709–2716.
  156. Balkau B, Bertrais S, Ducimetiere P, Eschwege E. Is there a glycaemic threshold for mortality risk? Diabetes Care. 1999;22:696–699.
  157. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346:393–403.
  158. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, IlanneParikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344: 1343–1350.
  159. Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Tan S, Berkowitz K, Hodis HN, Azen SP. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes. 2002;51:2796–2803.
  160. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trail Research Group. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002; 359:2072–2077. Figure 3. In the cells, hyperglycemia and FFA induce overproduction of superoxide at the mitochondrial level and nitric oxide overproduction through NOS, whereas PKC and NF-kB are activated and favor an overexpression of the enzyme NADPH. NADPH generates a great amount of superoxide. Superoxide overproduction, accompanied by increased nitric oxide generation, favors the formation of the strong oxidant peroxynitrite, which in turn damages DNA. DNA damage is an obligatory stimulus for the activation of the nuclear enzyme poly(ADP-ribose) polymerase. Poly(ADP-ribose) polymerase activation in turn reduces the GAPDH activity. This process results in the adipocyte and muscle in reduced GLUT4 expression and the subsequent insulin resistance, in endothelial cell in endothelial dysfunction, in cells in decreased insulin secretion/production. CCBs, statins, ACE inhibitors, ATI inhibitors, and glitazones may intervene at different levels in preventing this phenomenon. Ceriello and Motz Oxidative Stress and the Common Soil Hypothesis 821 Downloaded from by on January 18, 2022
  161. Brown MJ, Palmer CR, Castaigne A, de Leeuw PW, Mancia G, Rosenthal T, Ruilope LM. Morbidity and mortality in patients randomised to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet. 2000;356:366–372.
  162. Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BH, Zinman B. HOPE Study Investigators: Ramipril and the development of diabetes. JAMA. 2001;286:1882–1885.
  163. Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I, Isles C, Lorimer AR, Macfarlane PW, McKillop JH, Packard CJ, Shepherd J, Gaw A. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation. 2001;103:357–362.
  164. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H; LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002; 359:995–1003.
  165. Vermes E, Ducharme A, Bourassa MG, Lessard M, White M, Tardif JC; Studies Of Left Ventricular Dysfunction. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the Studies Of Left Ventricular Dysfunction (SOLVD). Circulation. 2003; 107: 1291–1296.
  166. Mason RP, Marche P, Hintze TH. Novel vascular biology of thirdgeneration L-type calcium channel antagonists: ancillary actions of amlodipine. Arterioscler Thromb Vasc Biol. 2003;23:2155–2163.
  167. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001; 21:1712–1719.
  168. Mu¨nzel T, Keaney JF Jr. Are ACE inhibitors a “magic bullet” against oxidative stress? Circulation. 2001;104:1571–1579.
  169. Ceriello A, Motz E. Angiotensin-receptor blockers, type 2 diabetes, and renoprotection. N Engl J Med. 2002; 346:705–707.
  170. Da Ros R, Assaloni R, Ceriello A. The preventive antioxidant action of thiazolinediones: a new therapeutic prospect in diabetes and insulin resistance. Diabet Med. in press
  171. Ceriello A. Acute hyperglycaemia and oxidative stress generation. Diabet Med. 1997;14:S45–S49.
  172. Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr. 2003; 78:361–369.
  173. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stressactivated signaling pathways mediators of insulin resistance and -cell dysfunction? Diabetes. 2003;52:1–8.
  174. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation. 2003;108:1912–1916.
  175. Maddux BA, See W, Lawrence JC Jr., Goldfine AL, Goldfine ID, Evans JL. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of -lipoic acid. Diabetes. 2001;50:404–410.
  176. Maechler P, Jornot L, Wolheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999;274:27905–27913.
  177. Williamson JR, Cooper RH. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 1980;117:K73–K85.
  178. Tretter L, Adam-Vizi V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of alpha-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci. 2000;20: 8972–8979.
  179. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3–L1 adipocytes. Diabetes. 1998;47:1562–1569.
  180. Talior I, Yarkoni M, Bashan N, Eldar-Fielman H. Increased glucose uptake promotes oxidative stress and PKC delta activation in adipocytes of obese, insulin-resistant mice. Am J Physiol. 2003;285:E295–E302.
  181. Paolisso G, Giugliano D. Oxidative stress and insulin action. Is there a relationship? Diabetologia. 1996;39:357–363.
  182. Ceriello A. Oxidative stress and glycemic regulation. Metabolism. 2000; 49:27–29.
  183. Bruce CR, Carey AL, Hawley JA, Febbraio MA. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defence mechanism. Diabetes. 2003;52:2338–2345.
  184. Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin producing cells. Diabetes. 1997;46:1733–1742.
  185. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52:581–587.
  186. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, Brownlee M, Araki E. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun. 2003;300:216–222.
  187. Paolisso G, Giugliano D, Pizza G, Gambardella A, Tesauro P, Varricchio M, D’Onofrio F. Glutathione infusion potentiates glucose-induced insulin secretion in aged patients with impaired glucose tolerance. Diabetes Care. 1992;15:1–7.
  188. Carlsson C, Borg LA, Welsh N. Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology. 1999;140:3422–3428.
  189. Lameloise N, Muzzin P, Prentki M, Assimacopoulos-Jeannet F. Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes. 2001;50:803–809.
  190. Paolisso G, Gambardella A, Tagliamonte MR, Saccomanno F, Salvatore T, Gualdiero P, D’Onofrio F, Howard B. Does free fatty acid infusion impair insulin action also though an increase in oxidative stress? J Clin Endocrinol Metab. 1996;81:4244–4248.
  191. Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest. 2003;112: 1831–1842.
  192. Jacqueminet S, Briaud I, Rouault C, Reach G, Poitout V. Inhibition of insulin gene expression by long-term exposure of pancreatic beta cells to palmitate is dependent on the presence of a stimulatory glucose concentration. Metabolism. 2002;49:532–536.
  193. El-Assad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S et al. Saturated fatty acids synerize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003;144:4154–4163.
  194. Piro S, Anello M, Di Pietro C, Lizzio MN, Patane G, Rabuazzo AM, Vigneri R, Purrello M, Purrello F. Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism. 2002;51:1340–1347.
  195. Ross R. The pathogenesis of atherosclerosis: a perspective for 1990s. Nature. 1993;326:801–809.
  196. Perticone F, Ceravolo R, Pujia A, Ventura G, Iacopino S, Scozzafava A, Ferraro A, Chello M, Mastroroberto P, Verdecchia P, Schillaci G. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001;104:191–196.
  197. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001;104:2673–2678.
  198. Baron AD. Insulin resistance and vascular function. J Diabetes Complications. 2002;16:92–102.
  199. Bohlen HG, Lash JM. Topical Hyperglycemia rapidly suppresses EDRFmediated vasodilatation of normal rat arterioles. Am J Physiol. 1993;265: H219–H225.
  200. Giugliano D, Marfella R, Coppola L, Verrazzo G, Acampora R, Giunta R, Nappo F, Lucarelli C, D’Onofrio F. Vascular effects of acute hyperglycemia in humans are reversed by L-arginine. Evidence for reduced availability of nitric oxide during hyperglycemia. Circulation. 1997;95:1783–1790.
  201. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, Yasue H. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999;34:146–154.
  202. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol. 1992;263: H321–H326.
  203. Marfella R, Verrazzo G, Acampora R, La Marca C, Giunta R, Lucarelli C, Paolisso G, Ceriello A, Giugliano D. Glutathione reverses systemic hemodynamic changes by acute hyperglycemia in healthy subjects. Am J Physiol. 1995;268:E1167–E1173.
  204. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996;97:22–28.
  205. Nishikawa T, Edelstein D, Du X-L, Yamagishi S, Matsumura T, Kaneda Y, Yorek M, Beebe D, Oates P, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–790. 822 Arterioscler Thromb Vasc Biol. May 2004 Downloaded from by on January 18, 2022
  206. Garcia Soriano F, Virag L, Jagtap P, Szabo E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabo C. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nature Med. 2001;7:108–113.
  207. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RAK, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88:14–22.
  208. Pleiner J, Schaller G, Mittermayer F, Bayerle-Eder M, Roden M, Woltz M. FFA-induced endothelial dysfunction can be corrected by vitamin C. J Clin Endocrinol Metab. 2002;87:2913–2917.
  209. Ceriello A. The possible role of postprandial hyperglycaemia in the pathogenesis of diabetic complications. Diabetologia. 2003;46:M9–M16.
  210. Del Prato S. Loss of early insulin secretion leads to postprandial hyperglycaemia. Diabetologia. 2003;46:M2–M8.
  211. Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L, Bais B, Da Ros R, Motz E. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation. Effects of short- and long-term simvastatin treatment. Circulation. 2002;106:1211–1218.
  212. Poitout V, Robertson RP. Minireview: secondary beta-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity. Endocrinology. 2002;143:339–342.
  213. Bast A, Wolf G, Oberbaumer I, Walther R. Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia. 2002;45:867–876.
  214. Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002;45:85–96.
  215. Meraji S, Jayakody L, Senaratne PJ, Thomson ABR, Kappagoda T. Endothelium-dependent relaxation in aorta of BB rat. Diabetes. 1987;36: 978–981.
  216. Mayhan WG. Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus. Am J Physiol. 1989;256: H621–H625.
  217. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin dependent diabetes mellitus. Circulation. 1993;88:2510–2516.
  218. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, Andrews JW, Hayes JR. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin dependent) diabetes mellitus. Diabetologia. 1992;35:771–776.
  219. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19:257–267.
  220. Hu FB, Stampfer MJ. Is type 2 diabetes mellitus a vascular condition? Arterioscler Thromb Vasc Biol. 2003;23:1715–1716.
  221. Roebuck KA. Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB. Int J Mol Med. 1999;4:223–230.
  222. Lane N. A unifying view of ageing and disease: the double-agent theory. J Theor Biol. 2003;225:531–540.
  223. Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A, Dandona P. Elevation of free Fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52: 2882–2887.
  224. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106:2067–2072.
  225. Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM, Paolisso G, Marfella R, Giugliano D. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol. 2002; 39:1145–1150.
  226. Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Esposito K, Giugliano D. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes. in press
  227. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290:486–494.
  228. Ceriello A, Quagliaro L, Catone B, Pascon R, Piazzola M, Bais B, Marra G, Tonutti L, Taboga C, Motz E. The role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care. 2002;25:1439–1443.
  229. Marchioli R, Schweiger C, Levantesi G, Gavazzi L, Valagussa F. Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids. 2001;36:S53–S63.
  230. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/ reperfusion injury. Pharmacol Rev. 2001;53:135–159.
  231. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “Causal” antioxidant therapy. Diabetes Care. 2003;26: 1589–1596.
  232. Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A. 2003;100: 5407–5412.
  233. Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, Viberti GC. Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes. 2000;49:2170–2177.
  234. Hodgkinson AD, Bartlett T, Oates PJ, Millward BA, Demaine AG. The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy. Diabetes. 2003;52: 846–85